

Silica Fiber Lasers and Amplifiers as Pump Sources for Frequency Conversion

Daniel Creeden

daniel.creeden@baesystems.com

603-885-4313

maintaining the data needed, and c including suggestions for reducing	neuron of minimatori is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding and DMB control number.	tion of information. Send comments parters Services, Directorate for Info	s regarding this burden estimate or promation Operations and Reports	or any other aspect of the property of the contract of the con	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE SEP 2010				3. DATES COVERED -		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Silica Fiber Lasers and Amplifiers as Pump Sources for Frequency Conversion				5b. GRANT NUMBER		
CONVERSION				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) BAE Systems				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAII Approved for publ	ABILITY STATEMENT ic release, distributi	ion unlimited				
13. SUPPLEMENTARY NO See also ADA56469	otes 94. Mid-Infrared Fi l	ber Lasers (Les fibi	res laser infraroug	ge moyen). R	TO-MP-SET-171	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR	11	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Brief Overview of Nonlinear Conversion
 - Nonlinear materials, pump sources
- General fiber overview
- Design constraints and limitations
 - Nonlinear effects in fiber
- Considerations for fiber used in nonlinear conversion
 - Yb, Er, Er:Yb, Tm
 - Advantages and disadvantages
 - Fiber geometries
 - Architectures
- Summary
- General issues
- Moving forward

Mid-IR Generation

- Traditionally, Mid-IR light is frequency shifted from a laser pump
 - Diode-pumped solid-state laser converted in a nonlinear crystal
 - Typically ZGP, PPLN, OPGaAs
- How can we use fiber with Mid-IR light
 - We can use it to transport Mid-IR light over several meters
 - Fluorides and chalcogenides for power distribution
 - Advantages: only fibers which can transport MWIR light with low loss
 - Disadvantages: multimode output spoils beam quality
 - Not necessarily bad for most applications
 - However, we can use traditional fiber as a pump source
 - Take advantage of silica fiber technology
 - Transport the pump to nonlinear converter

What is Needed For Mid-IR Generation?

- Pump source
 - Bright, single-mode laser
 - Generally need M² < 2
 - High peak power pulses
 - Generally several kW peak
 - Polarized output
 - For phase matching in nonlinear material
- Nonlinear material
 - Phase-matched to the pump and wavelengths to be generated
 - Conservation of energy and momentum
 - Critically phase-matched vs QPM materials
 - Conversion: methods: OPO, OPG, OPA

Nonlinear Optical Crystals – What Is Needed

- Higher efficiency and output power in the 2-8μm spectral range
- Mid-IR crystals compatible with common pump lasers
- Better long-wavelength materials for CO₂ doubling and 8-12μm generation
- Desirable material properties:
 - High nonlinear coefficient
 - Low absorption loss
 - · High laser damage threshold
 - Low thermal lensing
 - I ow/no walk-off
 - Non-critical phase matching (NCPM)

Birefringence Crystals

QPM Semiconductors

Common Nonlinear Materials for Mid-IR Conversion

PPLN

- Mature material, QPM
- Limited transparency range in MWIR
- ZGP
 - High nonlinear coefficient
 - Critically phase-matched
- OPGaAs
 - QPM, high nonlinear coefficient
 - Large transparency range
 - Low absorption
 - High thermal conductivity

Solid-state vs. Fiber Pump Lasers

- Solid-state lasers
 - Q-switched
 - Good beam quality M²: 1.2-2.0
 - Lower repetition rates, long pulse widths
 - Trade-off between pulse width and PRF
 - Generally high pulse energy with high peak power
- Fiber lasers
 - Excellent beam quality M²: 1.0-1.5
 - Efficient, compact
 - Minimal/no free-space optics
 - Variable rep rates and short pulse widths →
 - Low pulse energy with high (or low) peak power
 - Wavelength flexibility
 - Power scalable with beam quality

Larger pump spots to mitigate NLO crystal damage

Smaller pump spots for high peak intensities

So Why Bother With Silica Fiber?

- It can efficiently generate high powers and transport pump light
 - Transparent from near-IR (<800nm) up into mid-IR (2100nm)
- Gain length
 - Distribute the gain (lower gain per unit length, longer length)
 - Spread the heat load over long fiber length (surface area for heat removal)
- Frequency agility
 - Glass has a very chaotic structure
 - Broad absorption and emission features compared to crystals
- Efficient pump/signal overlap
 - Let the waveguide do the work
- It is inexpensive (in large quantities)
 - Leverage the telecom investments
 - Splicing, diodes, components, etc.
- The light is entirely confined to the fiber

For High Power Operation

- DPSS crystal-based technologies
 - Thermal lensing in crystal
 - Beam distortions at high powers
 - Need <u>significant</u> waste heat removal
 - This requires a major engineering effort and increases size, weight, power
- Fiber
 - Pump absorption is spread over a few meters rather than a few centimeters
 - Fiber core is close to the heat-sink
 - Only a few hundred microns
 - Architectures can be power scalable without significantly impacting beam quality

Typical Fiber Dopants

- Erbium (Er)
 - Low gain, but eyesafe emission at 1.55µm → telecom wavelengths
 - Can pump at 980nm or resonantly at 1470-1532nm
- Ytterbium (Yb)
 - · Very high gain, very efficient
 - Emission from 1000-1150nm (typically used from 1035-1080nm)
 - Can pump from 915nm-975nm
- Ytterbium-sensitized erbium (Er:Yb)
 - High power emission at 1.55µm → higher gain due to Yb ions
 - Pumped from 915nm-975nm
- Thulium (Tm)
 - 2-micron emission from 1850-2100nm
 - Pumped at 795nm or 1550nm
- Thulium-Holmium (Tm:Ho)

Fiber Lasers

- Just like a solid-state laser, but the fiber is the gain medium
 - Instead of a crystal and mirrors, we have a fiber and gratings
 - Diode pumps the fiber to excite the active ions
 - Gratings provide feedback at a specific wavelength for oscillation
 - Typically CW operation
 - But they can be q-switched or modulated
 - Have very closely spaced modes due to long cavity lengths
 - Typically several meters

Amplifier Operation

- Just like a solid-state amplifier (all about overlap and saturation)
 - But you don't have to mode-match the signal and the pump
 - The waveguide does this for you
 - Length is determined by the core/clad area overlap
 - And thus, the pump/signal overlap

Fiber Amplifiers

- When seeded, fibers make very efficient amplifiers
 - Offer much more gain than crystal amplifiers
 - Due to length of gain medium
 - Fiber amplifier typically offer gains ranging from 5-20dB
 - The ability to generate pulsed output from a fiber
 - By seeding with a pulsed source (diode, microchip laser)

Performance

- Very high efficiency
 - Due to gain length and core/clad overlap (signal/pump overlap)
 - All of the pump is used (and all the gain is in the core)
- CW operation
 - Yb-doped CW fiber systems have demonstrated >75% optical efficiency
 - Er-doped systems are ~30% efficient (low power)
 - Er:Yb-doped are ~35% efficient (high power)
 - Tm-doped fibers are approaching 60% efficiency
- Pulsed operation
 - High peak-powers are achievable rather efficiently
 - Slightly less efficient than CW, but still much better than DPSS systems
 - Due to low duty cycles
 - Nonlinear effects become a major issue
 - This is where the engineering comes in

Limitations of Fiber Systems

Energy Scaling

- What are the limits?
 - Fiber core size high powers do not like to be confined to such a small area
 - 10W average (10kHz, 10ns) in a 30um core = 14GW/cm²
- Self-focusing limit
 - High intensities modulate the nonlinear refractive index in the core
 - This can form a Kerr lens and focus the light until the fiber breaks
 - The limit for silica fiber is ~4.5MW of peak power at 1064nm
 - Does not depend on core size → we have length on our side again
- Surface damage
 - Occurs at the glass-air interface as the light exits the fiber
 - Depends on the surface quality and the pulse width but a good rule of thumb is <4GW/cm²
- Bulk damage
 - Depends on the peak power, pulse width, and core size (~600GW/cm²)
- Nonlinearities in the fiber

Nonlinear Effects

- Fibers have one particular "limitation"
 - Small cores yield very large optical intensities
 - Consequently, the good things about fiber are also bad
 - Small cores and long lengths may induce nonlinear effects
- What are these effects?
 - Stimulated Raman Scattering (SRS)
 - Stimulated Brillouin Scattering (SBS)
 - Single frequencies
 - Self-phase Modulation (SPM)
 - Optical Kerr effect
 - Nonlinear phase shift
 - Four-wave Mixing (FWM)
 - X⁽³⁾ susceptibility
- Solutions?
 - "Short" fiber lengths, large cores
 - Novel fiber geometries

Now for the Math...

$$P_{SRS}^{thr}(\lambda) \approx \frac{16 \cdot A_{eff}}{g_R(\lambda) \cdot L_{eff}} \qquad P_{SBS}^{thr}(\lambda) \approx \frac{21 \cdot A_{eff}}{g_B(\lambda) \cdot L_{eff}} \cdot \left(1 + \frac{\Delta v_s}{\Delta v_B(\lambda)}\right)$$

$$\Phi_{SPM} = \frac{2\pi n_2}{\lambda A_{eff}} P L_{eff}$$

- All effects are a function of fiber length, core size, and wavelength
 - Shorter fibers, larger cores increase the nonlinear thresholds
 - The longer the wavelength, the higher the threshold
- Example
 - Pulsed Yb-doped fiber amplifier at 1064nm (10kHz PRF, 10ns pulses)
 - Core diameter = 15um; fiber length = 5m; $g_R = 1x10^{-13}$ m/W
 - P_{SRS}=6.5kW → average power of 650mW is above the SRS threshold

Amplified Spontaneous Emission (ASE)

- The excited ions have to go somewhere
 - If not extracted, the excited electrons decay and spontaneously emit
 - Unfortunately, there is gain at the emission wavelengths
 - So the spontaneous photons see gain and get amplified
 - This reduces the amount of gain seen by the signal, thus reducing efficiency
- Solution
 - Filter the out-of-band ASE
 - Saturate the gain so the signal extracts most of the pump

Background Losses in Silica

- Fibers have lowest loss in 1.55µm window (telecom)
- Relatively low loss in 1.0µm region
- Above 1.6µm, losses are getting higher
- Above 2.1µm, background loss is becoming significant (>0.1dB/m)
 - For lasing, this means higher threshold for lasers
 - Shorter fiber lengths would be required for efficient operation
 - Higher propagation losses in passive fiber
 - Limits propagation distances
 - 10m transport = 20% power loss

So What are Silica Fibers Systems Good For?

- High average power, low pulse energy output
 - With diffraction-limited performance
 - Higher repetition rates (<50kHz to >1MHz)
 - High efficiency → far better than DPSS lasers
 - Peak power output depends on pulse width and PRF
- Fibers make the perfect pump source for frequency conversion
 - Excellent beam quality
 - Determined by the fiber geometry
 - Wavelength agility (not offered in crystal systems)
 - Yb fiber offers more than 100nm of gain
 - Tm offers more than 200nm
 - · Pulse flexibility
 - Pulse width and PRF variability
- Manufacturability
 - You can splice these fibers together and eliminate free-space transitions

Considerations for Nonlinear Conversion

What are Needed from Fibers for Conversion

- Need to match the pump laser with nonlinear material
 - Gain region in fiber with the nonlinear material
 - Yb with PPI N
 - Er:Yb with PPLN
 - Tm with ZGP, OPGaAs
- Need energy and peak power for conversion
 - Nonlinear materials only care about peak intensity/energy
 - These are not energy storage devices
 - Conversion only occurs on a pulse-to-pulse basis
 - This translates to either high peak power or high intensities
 - By focusing tightly into nonlinear material

Ytterbium-Doped Fiber Systems

- Advantages:
 - High efficiencies (>70%)
 - Low quantum defect
 - Pumping from 915-976nm
 - Lasing from 1040-1080nm
 - Common wavelengths
- Primary Nonlinearities:
 - SRS, SBS, SPM, FWM
- Challenges:
 - Peak power scaling due to nonlinear effects
- How to get high peak power:
 - Large fiber cores, short fiber lengths
 - Novel fiber geometries

Ytterbium Fiber Geometries

Large Mode Area (LMA)

- D. Kliner, et al., SPIE OE Magazine (2004)
- Large core (15-30µm) with low NA (0.06-0.1)
- Up to 80µm has been reported (U. Michigan)
- Advantages:
 - Coiling promotes single-moded operation
 - HOMs get coupled into cladding
 - Conventional splicing technology can be used
- Disadvantages:
 - Coiling can artificially reduce mode size in the core
 - Larger cores can support higher order modes
 - · Even with coiling
 - Cannot scale to very large cores due to limited NA range
 - Difficult to reduce NA below 0.06
 - Splicing is difficult for cores above 25µm diameters

J.M. Fini, Opt. Exp. 14, 69 (2006)

Ytterbium Fiber Geometries

- Photonic Crystal Fiber (PCF)
 - Very large core (>40um) with low NA (<0.03)
 - Air holes tailor the NA
 - Advantages:
 - "Endlessly" single-mode operation
 - Significantly larger core diameters than LMA fibers

F. Di Teodoro and C. D. Brooks, ASSP (2006)

- Promotes power scaling with higher nonlinear thresholds
- Disadvantages:
 - Coiling limitations
 - Low NA promotes significant bend-losses
 - For fundamental mode
 - Requires >25cm bend radii
 - Air holes are present around the core
 - Cannot splice without collapsing air holes
 - Need free-space transition

J. Limpert, et al., Opt. Express 14, (2006)

Ytterbium Fiber Geometries

- Chirally-Coupled Core (CCC)
 - Large core with low-moderate NA
 - Helical coupled core
 - HOM suppression
 - Advantages:
 - Higher order modes see loss due to CCC

C. Liu et al., ASSP (2007)

- Significantly larger core diameters are achievable than LMA fibers
 - Promotes power scaling with higher nonlinear thresholds
- Can use with conventional splicing technology
- Disadvantages:
 - Relatively new technology
 - Need to develop components with matching passive fibers
 - Bend radii can be large (15cm for 35um core)
 - To avoid distortion in the fiber core
 - Results in larger packages

High Peak Power YDFA

- MOPA architecture
 - Seeded by a microchip laser
- 10W average power, 9.6kHz PRF, 1ns PW
 - 1mJ pulse energy, 1MW peak power

Erbium Fiber Systems

- Advantages:
 - Eyesafe output in the 1.55um region
 - Lasing from 1525-1575nm
 - Leverage telecom technologies
- Primary issues:
 - Low gain
 - Doping is limited due to quenching
- Challenges:
 - Absorption is low at 980nm
 - · Requiring long fiber lengths
 - Diode brightness limitations
 - Resonant pumping at 1470nm adds promise to Er-only fibers
 - But diodes are inefficient and not bright enough for high power

Erbium-Ytterbium Fiber Systems

- Advantages:
 - Eyesafe output in the 1.55um region
 - Lasing from 1525-1575nm
 - Pump with diodes used in Yb
 - 915-975nm
- Primary issues:
 - Energy transfer from Yb to Er
 - 1-micron ASE and parasitic lasing
- Challenges:
 - Power scaling
 - NA limitations
 - Yb lasing

Erbium-Ytterbium Fiber Geometries

- Pedestal Fiber
 - Co-doping increases index in the fiber core
 - A "pedestal" surrounding the core can reduce the NA in the core
 - Advantages:
 - Lower NA core compared to non-pedestal LMA designs
 - NAs of 0.1 have been achieved
 - Disadvantages:
 - Additional glass material in the fiber
 - Fusion splicing issues
 - NA cannot be reduced indefinitely
 - Limits power scaling with SM operation

Pulsed Er:Yb Fiber Amplifier

- Pulsed MOPA
 - Generating 10W average output power
 - ~8ns pulses at 1545nm
- Converting to MWIR in PPLN
 - 10mm long crystal
 - 1.2W average MWIR power

Front end

Thulium Fiber Systems

- Advantages:
 - High efficiencies
 - Due to 2-for-1 cross-relaxation
 - Pumping at ~795nm
 - Direct eyesafe output in the 2-micron region
 - 1850-2100nm
- Primary nonlinearities
 - FWM, SPM
- Challenges:
 - Power scaling
 - Due to NA limitations
 - · Aluminum doping

Thulium Fiber Geometries

- Tm fiber geometries
 - LMA-pedestal
- To get high efficiencies in thulium
 - Must get ions to cluster
 - Dope core with aluminum ions
 - Causes index/NA to increase
 - Surrounding the core with an undoped pedestal
 - Drops the NA of the core
 - With respect to pedestal
 - Disadvantages:
 - Additional glass material in the fiber
 - Fusion splicing issues (4 glasses in a PM fiber)
 - NA cannot be reduced indefinitely
 - Limits power scaling with SM operation

TDFA Pumped Mid-IR ZGP OPO

TDFL Pumped Mid-IR OPGaAs OPO

- Q-switched Tm:Ho fiber laser
 - Grating used to narrow output spectrum
- Pumping OPGaAs for MWIR generation
 - 2.2W mid-IR output power

Summary

- Must tailor the fiber pump to the nonlinear material
 - Nonlinear material will drive fiber dopant selection
- Must design fiber system around nonlinear effects
 - For nonlinear conversion, we must generate peak power
 - Without running into nonlinear effects in the fiber
 - Need novel fiber geometries or clever architectures
 - To achieve high enough peak powers to convert
- We are currently at the limit of conventional technology
 - Limited by components, doped fiber, free-space coupling
 - Ideally, we need all-fiber solutions

General Issues

- Nonlinear effects
 - Need to trade-off nonlinear thresholds in the fiber with the peak-power requirements of the frequency converter
- Brightness of pump sources
 - To keep gain lengths relatively short you need a high core/clad ratio
 - Either means large core or small cladding
- Beam quality from LMA fibers
 - LMA fibers cannot scale indefinitely
 - Eventually higher order modes will prevail
 - This leads to other fiber geometries (CCC, PCF)
 - But we need components and architectures which mate with these new fibers

General Issues

- Components
 - Passive fibers to match active fibers
 - Isolators, taps, pump combiners, diodes, etc.
- Fiber geometries
 - LMA fibers have scaling issues
 - The larger the core, the lower the NA
 - Limits coiling, mode can get distorted by coiling (reducing mode area)
 - Pedestal designs are difficult to splice to
 - 3-4 different glass compositions in a single fiber
 - Each with a slightly different melting point
- More research into other dopants
 - Ytterbium is very common, but is the farthest away from the mid-IR
 - Thulium and holmium are promising for mid-IR generation
 - Offering high efficiency with wavelength advantages

Path Forward

- More emphasis needs to be placed on component and fiber development
 - Currently there are few commercial vendors of specialty fibers
 - Especially for Thulium or Holmium-doped fibers
 - Also few vendors for components
- Every time a new fiber is made, new components need to be developed
 - Limits the turn-around time from new fiber development to its implementation in a system
 - Need pump combiners and isolators compatible with the fiber
- Ideally, everything needs to be fiber-coupled
 - To eliminate free-space coupling
 - Free-space coupling into small-core fibers is not practical in real-world systems